Hyperplane face semigroups have attracted interest in recent years due to applications to Markov chains, descent algebras and buildings. Here I’ll describe an alternative way to think about hyperplane face semigroups from the zonotope view point.

Let me start with zonotopes. A *zonotope* is a linear projection of a hypercube. In other words, it is an image of under some linear map. Alternatively, one can define a zonotope as a Minkowski sum of line segments. In this case is the image of under Zonotopes are convex polytopes and each face of a zonotope is a zonotope (it is an image of a face of the hypercube).

Zonotopes are dual to central hyperplane arrangements. Let be a central hyperplane arrangement in a finite dimensional real inner product space . We assume that they are give by linear forms , for , with . The dual zonotope is the Minkowski sum in .

Associated to each point is a sign vector (also called a covector in oriented matroid theory). If , then is according to whether is positive, negative or zero. The sign vector of is then given by . For example, if is the coordinate hyperplane arrangement in , then the sign vector of just records the sign of each of its coordinates. The dual zonotope in this case is just the -cube .

Another important hyperplane arrangement is the braid arrangement in . It consists of the hyperplanes , with . Sign vectors are in bijection with ordered set partitions of . For instance, the ordered set partition of corresponds to all sign vectors of points with . The dual zonotope to the braid arrangement is the *permutahedron*. It is the convex hull of all vectors in of the form with .

The faces of are in bijection with sign vectors of the arrangement . Using we can think of vectors in as functionals on . Then one can check that the functionals associated to two vectors are maximized on the same face of if and only of they have the same sign vector. If is a sign vector of the arrangement, the corresponding face of is the Minkowski sum , which is again a zonotope!

In oriented matroid theory there is standard way to multiply sign vectors. First we define a monoid structure on as follows. is the identity element. The elements are left zeroes, that is and for all . Now we can view the set of -dimensional sign vectors as a monoid. A beautiful observation of Tits is that the set of sign vectors associated to

is a submonoid of . To see this let . Then where is the result of making a small movement on the line segment from to .

I want to give an action of the monoid on the zonotope by cellular maps.

Let’s consider first the coordinate hyperplane arrangement in . This case is very easy and explicit. Recall that and . Consider the following three functions : is the identity: is the constant map to ; and is the constant map to . Then the assignment gives an isomorphism of with a monoid of cellular mappings on .

I’ve not been able to generalize this explicit construction to arbitrary arrangements. Instead, I use the fact that a zonotope , like any polytope or regular CW complex, is homeomorphic to the geometric realization of the order complex of its face poset .

Moreover, if we give the CW structure whose closed balls are the geometric realizations of principal order ideals, then the above homeomorphism is a combinatorial isomorphism of CW complexes.

The beautiful fact is that if is a hyperplane arrangement, the face poset of the zonotope is Green’s -order on ! This is a standard fact in oriented matroid theory and can be easily checked from the above correspondence between sign vectors and faces. The reader should check that the -preorder on is an order and boils down to if and only if .

Now the -order is stable for left multiplication for any semigroup and so acts on the face poset of by order-preserving maps. Thus it acts on by cellular maps with respect to the CW structure defined above. As this is a combinatorially isomorphic CW complex with we have found the desired action.

I would very much like a direct description of this action which avoids going through face posets and order complexes. There should be something as simple as in the case of coordinate hyperplane arrangements!

One application of this action is that the augmented cellular chain complex for is a minimal length projective resolution of the trivial -module and so the cohomological dimension of is .

All this can be generalized to affine hyperplane arrangements, oriented matroids and complex hyperplane arrangements. This is part of forthcoming work with Margolis and Saliola.

Pingback: Isomorphism of oriented matroids from a semigroup viewpoint | Semigroups: a personal perspective